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Abstract—Democracy is crucial to a cryptocurrency ecosystem,
as the diversity of miners (farms, personal computers, web
clients, or even cloud functions) underlays the credibility of
the cryptocurrency. Among miners, web clients used to be the
vast majority, e.g., S0M+ as of March 2018. As time went on,
however, cryptomining was gradually monopolized by mining
farms with dedicated hardware (e.g., ASICs), and web clients
scaled down to ~0.1M. To suppress mining farms, certain
cryptocurrencies (like Monero) adopted new mining algorithms
such as RandomX whose execution relies on general-purpose
hardware architectures. Unfortunately, this further impairs web-
based cryptomining as web clients cannot provide the desired
architecture support to these algorithms. This paper explores
how to revive software democracy of efficient web-based crypto-
mining, using a novel program transformation technique termed
Vectra. Vectra employs just-in-time (JIT) transformations of min-
ing programs for web architectures; it effectively identifies and
merges isomorphic instructions upon execution. Vectra ensures
correct transformations based on symbolic constraints of the
instructions. Real-world deployments show that Vectra reduces
WASM instructions by about 7 x and achieves a 3x-16x speedup
for web cryptomining in diverse execution environments like PCs,
mobile phones, and serverless platforms, which translates to a
high (69%-274 % ) return-on-investment (ROI) for common users.

Index Terms—cryptocurrency ecosystem, web cryptomining,
serverless computing, just-in-time program transformation

I. INTRODUCTION

Cryptomining (or mining for short) is an essential pillar of
cryptocurrency systems like Bitcoin [1], Ethereum [2], and
Monero [3]. Miners solve computationally difficult mathemat-
ical puzzles for new transactions that need to be added to
the blockchain; the first miner to solve the puzzle is paid in
cryptocurrency. To maintain the cryptocurrency’s credibility,
cryptomining was designed to be decentralized and support
a variety of miners [4], [5] including mining farms, personal
computer (PC) applications, web clients, or even serverless
cloud functions. In principle, no individual entity can domi-
nate computation power and monopolize the market, i.e., the
cryptocurrency ecosystem should be democratic.

However, the democracy of the cryptocurrency ecosystem
has been recently threatened by the increasing cost-efficiency
of dedicated mining hardware (e.g., ASICs and FPGAs), which
facilitates centralized mining farms’ monopolizing the mining
of major cryptocurrencies like Bitcoin and Monero. This
renders common users’ cryptomining less profitable or unprof-
itable, because the vast majority of mining rewards are taken
by mining farms while the remainder (gained by common
users) cannot even cover their electricity and network traffic

2643-1572/25/$31.00 ©2025 IEEE
DOI 10.1109/ASE63991.2025.00040

2University of Southern California

393

3Ant Group “UIUC

bills. In particular, web clients, which used to take the majority
of miners (e.g., 50M+ as of March 2018) for their pervasive
accessibility on various devices and OS independence [6], [7],
had dramatically scaled down to <0.1M as of May 2022. In
the meantime, PC applications scaled down to ~0.8M.

To break the monopoly of mining farms, in recent years
mainstream cryptocurrencies like Monero, ArQmA [8], and
Scala [9] enforced new mining algorithms like RandomX [10],
RandomARQ [11], and Panthera [12]. These algorithms rely
on the architectural features of general-purpose hardware, such
as dynamic instruction execution [13] and vectorization [14]
in the instruction set architectures (ISAs) of CPUs, effectively
reducing the advantage of dedicated mining hardware that
only supports fixed instruction patterns [15], [16]. The mining
efficiency of PC applications thus surpasses that of mining
farms by two orders of magnitude (>140x) [10].

Unfortunately, the adoption of new mining algorithms im-
pairs web cryptomining, because web is designed to hide
underlying hardware details to achieve platform independence.
To validate a transaction, web clients have to emulate architec-
tural features of general-purpose hardware. This severely slows
down web cryptomining (~25x slower than a PC application)
and makes it unprofitable. Notably, Coinhive (the biggest web
cryptomining provider by then) asserted web mining to be “not
economically viable anymore” and shut down its service [17].
Hence, the democracy has not been fully recovered as web
cryptomining has a much larger legitimate' user base (i.e.,
50M+); also, it is an important monetization channel for many
websites to maintain their existence [22], [23].

Key insight. We aim to revive the democracy of cryptocur-
rency ecosystems by making web cryptomining efficient (and
thus profitable). Through our analysis of mainstream mining
algorithms, we find that the bottleneck of web cryptomining
comes from the inefficient execution of mining instructions (in
particular, vector instructions that dominate the mining pro-
cess) in WebAssembly (WASM)?. WASM uses a stack-based
virtual machine (VM) in a push-pop manner for portability,
which differs greatly from the register-based 1SAs of CPUs.

We take the three vector instructions dynamically generated
by RandomX (the most popular algorithm to resist mining

I'The legitimate user base of web cryptomining is far more than the illegal
one that conducts web cryptojacking [18], [19] and illicit transactions [20],
[21]. In fact, when legal users are prevented by new mining algorithms, web
cryptomining is being dominated by illegal usages.

2We focus on WASM for its performance advantage over JavaScript [24].
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Fig. 1: Vectra accelerates web cryptomining by analyzing and utilizing the element propagation paths for vector instructions.

farms) in Figure la as an example. Each instruction operates
on two floating points. For PC applications, these instructions
can be efficiently translated to single-cycle SIMD (Single
Instruction Multiple Data) instructions [25] of CPUs. How-
ever in Figure 1b, web clients need to translate each vector
instruction to 24 (SISD-style) WASM element instructions.
This is because WASM cannot represent most (~80%) vector-
related data types in CPU ISAs (e.g., directed-rounded floating
points [26] and 128-bit integers [27]) that need special regis-
ters for state maintenance, thus having to emulate their arith-
metics. Also, due to the mutable jump targets of conditional
instructions widely used in the new mining algorithms that
make the control flow quite complicated [28], these element
instructions are hard to be re-vectorized by traditional code
optimization techniques like SLP vectorization [29], [30].

Our approach. We propose a program transformation tech-
nique termed Vectra to achieve efficient web cryptomining
by accelerating the execution of mining instructions. The key
idea is to merge instructions of dynamically generated mining
programs based on the isomorphism of data propagation across
vector elements in a just-in-time manner.

Specifically, Vectra introduces an abstraction termed Ele-
ment Propagation Graph (EPG) to track how the value of
each element is propagated along instructions. Figure 1c shows
an example of EPG of instructions in Figure 1b. Each node
represents a vector element; each edge represents a data prop-
agation path through an arithmetic operation. For example,
element x( is generated from two propagation paths, i.e., the
two graph components in blue and orange. Similarly, there are
two other propagation paths (pink and purple) for element z7.
Vectra constructs EPGs in-situ, because the mining programs
are generated dynamically based on the mining algorithm.

The four propagation paths (blue, pink, orange, and purple)
in Figure 1c are isomorphic—they have the same data type, op-
erator sequence, and topological structure. Such isomorphism
is not a coincidence—the majority (85%) of element propa-
gation paths are isomorphic within a block of vector instruc-
tions (cf. §III-A). The high density of isomorphism offers an
opportunity to optimize the execution of related instructions.
Instead of following the default operation sequence of WASM
in Figure 1b, Vectra rearranges the elements of isomorphic
propagation paths together on top of the WASM processing
stack. Thus, multiple instructions corresponding to adjacent
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elements can be transformed into a WASM SIMD instruction.
In Figure 1d, 24 element instructions from Figure 1b are
merged into 6 vector instructions. Note that such an instruction
reduction (4 in the simple example) will be further improved
(6x-12x) when we have more (typically 10K+) instructions
with a higher degree of isomorphism.

We further optimize Vectra by automatically finding optimal
isomorphic components across the EPG to minimize the num-
ber of resulting WASM instructions. Conventional approaches
based on backtracking [31] bear a high time complexity of
O(n!), where n is the number of graph nodes. To address
this, we leverage the locality of data dependencies among
vectors together with a branch-and-bound strategy [32] to
divide the graph into subgraphs. By constraining the search
within subgraphs, we reduce time complexity to O(n?).

Since the transformation can rearrange the elements in a
vector, we must check whether the vector is modified (“dirty”)
before accessing it for correct referencing at runtime. However,
this needs to examine all the previously executed instructions
and introduces great (>120%) time overhead. Instead, before
executing the mining program for a new transaction, we cap-
ture every vector’s symbolic constraints [33], [34] that indicate
the conditions in which the vector will be manipulated. Based
on this foresight information, we only need to check if the
conditions of dirty vectors are satisfied at runtime, thereby
cutting the time overhead to merely 4%.

We implement the above approach into a practical system.
Our real-world deployments with extensive workloads show
that Vectra can reduce emulated WASM instructions by 7x
on average, which is 3x—16x faster at mining Monero under
diverse browser execution environments: PCs, mobile phones,
and serverless platforms (involving distributed metalog syn-
chronization for stateful functions). Compared to existing
methods that suffer from a negative (-65% to -24%) ROI [35],
Vectra brings a promising ROI of 69%—-274% to users.

Summary. This paper makes the following contributions.

e We conduct an in-depth study on the democracy of the
cryptocurrency ecosystem, and show how program analysis

can benefit web cryptomining with new mining algorithms.

We reveal the root cause of inefficient web cryptomining—
the gap between the ISAs of WASM (a high-level, portable
language for web) and the native CPU.



TABLE I: Devices used for our web-based mining tests. PC
denotes Personal Computer and MP denotes Mobile Phone.

Device CPU RAM 0S
PC-1 Intel i19-10980HK (2.90 GHz) 64 GB Windows 11
PC-2 Intel i7-10700F (2.90 GHz) 64 GB  Windows 11
PC-3 Intel E5-2420 (1.90 GHz) 64 GB  Ubuntu 22.04
PC-4 Apple M2 Pro (3.49 GHz) 16 GB  MacOS 13.4
MP-1 Snapdragon 888 (2.84 GHz) 12 GB Android 13
MP-2 Kirin 990 (2.86 GHz) 6 GB Android 10

e We develop Vectra, a just-in-time program transformation
technique to close the gap and enable profitable web cryp-
tomining. It speeds up web cryptomining by 3x-16x and
provides an ROI of 69%—-274% to users.

e All the code and data involved in this work are released at
https://WebCryptomining.github.io.

II. UNDERSTANDING WEB CRYPTOMINING

To combat mining farms that have gradually monopolized
cryptomining with dedicated hardware such as ASICs and
FPGAs, vulnerable cryptocurrencies (e.g., Monero [3], Ar-
QmA [8], and Scala [9]) have recently enforced the new
mining algorithms such as RandomX [10] and Panthera [12].
These new algorithms are anticipated to greatly reduce the
efficiency of dedicated hardware (thus suppressing mining
farms) through randomized instruction execution on top of the
common hardware architectures. Among them, RandomX is
the most widely adopted one, while the other algorithms are
mostly its variants [11]. In the following, we illustrate relevant
concepts based on RandomX, but note that all of them can be
generalized to other mining algorithms.

With new mining algorithms, a subscribing miner gathers
the information of new blocks with a nonce [36]. It then
transforms these data to a random seed and uses it to generate
special instructions in the RandomX instruction set. These
dynamic instructions utilize the architectural features of the
instruction set architectures (ISAs) of common CPUs, includ-
ing registers and instructions for vectors. Hence, they can be
efficiently translated to the machine code of CPUs [10]. In
contrast, they are unfriendly to dedicated hardware, which is
designed for static instruction patterns and is costly to be re-
configured. Thus, mining farms can be effectively suppressed.

Unfortunately, these new algorithms further hinder web-
based mining due to the architectural differences between the
web and general-purpose CPUs, while users constantly expect
to mine cryptocurrencies over the web given its convenience,
compatibility, and being widely supported and effectively
powered by the emerging serverless platforms [37], [38], as
well as decentralized monetization of web contents [22], [39].

Mining performance over web clients. To understand how
the efficiency of web cryptomining is degraded, we compare
the performance of CPU-based mining and web-based mining
with the new algorithms. We connect three mining algorithms
(i.e., RandomX, RandomARQ, and Panthera) corresponding
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to three major cryptocurrencies (i.e., Monero, ArQmA, and
Scala) to the mining pool [40] to perform real-world mining
tasks with devices listed in Table I.

For CPU-based mining, we directly mine on four PCs
and two mobile phones as listed in Table I. For mobile
devices, we only run Panthera because the other two mining
algorithms currently do not natively support mining on mobile
phones [12]. To run the three algorithms over the web,
we compile their open-source releases into WASM binaries
using Emscripten toolchains [41]. We incorporate the WASM
binaries into a web page, and load it for each algorithm with
Chrome 118.0 on each device in an automated manner [42],
[43]. We continuously perform mining tasks for a month and
record the number of calculated hash values per second (i.e.,
hash rate). Finally, we run a total of 257,290 mining tasks.

Figure 2 shows the performance of the Panthera algorithm
on different platforms. It exhibits superior performance in all
native environments, with an average hash rate of 326 H/s on
PCs and 113 H/s on mobile phones. In the web environment,
however, its hash rate drops significantly by >10x (note that
y-axis is using a log scale). The hash rates on PCs are all less
than 20 H/s, while the hash rates on mobile phones are all less
than 10 H/s. Such low mining efficiency directly makes web
cryptomining unprofitable—web clients can hardly become
the first to generate valid hash for a new transaction. Similar
situations happen to Monero and ArQmA.

Register-based ISA vs. stack-based ISA. We dissect the
execution process of the mining algorithms to understand how
the architectural differences affect the mining efficiency. We
find that the instructions involved in the execution of the Ran-
domX program can be mainly divided into vector instructions,
scalar instructions, and control instructions. The execution
time of vector instructions over the web is significantly longer
than that of the other two types of instructions. As shown in
Figure 3a, for regular CPU platforms, the execution time of
vector instructions is close to that of scalar instructions, each
accounting for ~40%. However, in the WASM environment
(Figure 3b), the time usage of vector instructions accounts for
over 85%. This implies that vector instructions are particularly
slowed down, leading to the inferior web mining performance.

Delving deeper, we find that the inefficiency of vector op-
erations in mining programs is caused by the high instruction
translation cost across register-based and stack-based ISAs.
Algorithms like RandomX employ register-based ISAs [44],
where vector operations are directly mapped to SIMD (Single
Instruction Multiple Data) instructions on general-purpose
architectures (e.g., SSE/AVX for x86 CPUs and Neon for
ARM CPUs [45]) as they are all register-based. However,
WASM is featured by a stack-based virtual machine (VM)
for better portability across diverse underlying platforms [24].

Figure 4 shows the difference in integer addition over
the two architectures. For the register-based architecture (i.e.,
the RandomX ISA in Figure 4a), we first move the two
operand integers to two source registers (i.e., r0 and r2). The
IADD_RS instruction is then executed to add the integers from



512 1.0 1.0——= —<C
EZA Native (CPU) J ‘ Max=86.11
256 WASM (Web) 0.8 Max=91.64 0.8 H 'I/ megnﬂ_ogs?ess
% 128 . ! EZE%}%‘?S%% : '\'\ Min=0.003
= 64 ’ P e
g = | g A w0011 e
X 1g % (&) 04 memgr&?.aw (@] 04 ’l Min=0412
= . in= Al
% 8 / . Max=09.20
g % Wiax=83.84 —— Vector § '— Veator e apo7
4 / 0.2 Mo ahes| == Scalar 02111 =7 ser Min=0.135
? ‘ A é __,»’ Min=2.831 -+ Others [ e Others
PC-1 PC-2 PC-3 PC-4 MP-1 MP-2 0 20 40 60 80 100 0 20 40 60 80 100
Device Percentage (%) Percentage (%)
(a) Regular CPU Platforms (b) WASM

Fig. 2: Hash rates of Panthera on PC apps
and web clients.
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Fig. 4: Example of adding two constant integers (101 +102 =
203) in register-based and stack-based ISAs.

the two sources. The result is stored in the destination register
(i.e., r2) of the IADD_RS instruction. For the stack-based
architecture (i.e., the WASM VM in Figure 4b), all operations
are accomplished by manipulating the data on top of the stack.
We need to first push the two operands onto the top of the stack
as referenced by the stack pointer (SP) in Figure 4b. When
adding the two operands, the WASM VM pops the top two
data elements and adds them up, and the result is pushed back.

Although the stack-based WASM ISA provides excellent
portability, it cannot represent many vector data types when
translating mining instructions. This is because the stack-
based WASM VM has no persistent registers for state mainte-
nance [46]. For example, the RandomX ISA supports directed
rounding of floating points, which requires the underlying
platform to have special registers to record towards which
direction (e.g., up, down, to nearest, and to zero) a floating
point should be rounded. Today’s CPUs all provide registers
(e.g., the MXCSR register of the x86 CPU) to maintain such
a state, but the WASM VM conceals these interfaces for
portability®. Worse still, they cannot be addressed by type
casting, which introduces precision loss and incorrect results.

Consequently, most (>80%) vector instructions are executed

3Specifically, the FADD_R instruction can be directly mapped to ADDPD or
FADD SIMD instructions in x86 or ARM ISAs respectively [26], but cannot
be directly mapped to WASM SIMD instructions.
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Fig. 3: Percentages of the execution time for different types of instructions.

by element-wise arithmetic emulation in WASM. For floating-
point vectors, the WASM VM emulates the arithmetic by pro-
cessing their mantissas, exponents, and sign bits as individual
elements. For 128-bit integers, each element is represented as
two 64-bit integers and its arithmetic is emulated by processing
the high-64 and low-64 bits separately. This substantially
increases the number of WASM instructions (by 10-35x),
rendering web cryptomining inefficient and unprofitable.

III. DESIGN

We present Vectra for efficient web cryptomining through
just-in-time program transformation, so as to revive the democ-
racy of the cryptocurrency ecosystem.

A. Design Overview

As we demonstrate in §II, the inefficiency of web crypto-
mining derives from the lack of data-level parallelism during
the execution of vector instructions of dynamic mining pro-
grams in WASM. As shown in Figure 1b, for vector data types
that are not natively supported by WASM, their corresponding
instructions have to be emulated with element-wise operations,
which greatly increases the number of translated WASM
instructions. Nevertheless, we find that these element-wise
operations can still have a high degree of data-level parallelism
if we transform and streamline a block of instructions by
investigating their vector element propagation processes.

For example, each floating-point multiplication instruction
is emulated by mantissa multiplication, exponent addition, and
sign bit XOR. This results in considerable repeated WASM
instruction patterns across different floating point instruc-
tions. Further, even for instructions that are not originally in
an SIMD form (i.e., scalar instructions), we can still seek
out isomorphism in their (element) propagation processes to
achieve speedups. Thus, isomorphism among instructions is
not a coincidence but an intrinsic feature, accounting for
85% of instructions within a code block according to our
measurements. We have also examined RandomX’s variants
including Panthera, RandomARQ, and RandomXEQ, finding
that all of them have the same level of isomorphism. In fact,
exploiting the SIMD features of CPU is a common practice
in cryptomining, so high degrees of isomorphism can also be
observed in other algorithms.
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Vectra transforms a dynamic mining program in-situ by
searching and merging isomorphic propagation paths into a
single SIMD instruction in WASM to significantly accelerate
web-based mining. Figure 5 visualizes our approach in Vectra,
which takes a sequence of instructions of dynamically gener-
ated mining program as the input, and performs the following
steps to realize the approach:

e Modeling Element Propagation (§11I-B). For a new se-
quence of instructions with respect to the mining program
of a new transaction, we first model its element propagation
process as an element propagation graph (EPG) in a just-
in-time manner, so as to describe how the value of a certain
element is spread across the element-related instructions.
Given that the WASM ISA does not natively support many
types of vector operations (cf. §II) on general-purpose
hardware architectures, we decompose the input instructions
into fine-grained operations over basic data types in WASM
during the construction of EPGs.

Efficient Program Transformation (§11I-C). After the just-
in-time EPG construction, we search for isomorphic propa-
gation paths in the graph and rearrange the data elements of
isomorphic components onto the WASM processing stack
for SIMD executions. Unfortunately, directly searching all
graph nodes bears a high time complexity of O(n!), where
n is the number of graph nodes. To address this, our key
observation is that the input instructions have a strong
locality regarding data dependencies, which confines the
isomorphic data propagation in neighbor instructions. We
cluster the graph nodes based on their locality density,
and only search for isomorphic components in the same
clustered subgraph. This reduces the complexity to O(n?).

Runtime Symbolic Correction (§11I-D). During the execution
of mining algorithms, conditional branch instructions can
lead to incorrect results as they interrupt the data propaga-
tion among vectorized instructions. Intuitively examining all
the previously executed instructions to ensure correctness is
not efficient. Instead, we introduce symbolic constraints to
the EPG. They capture the conditions in which elements will
propagate across a branch instruction. With the symbolic
constraints, we can ensure correct branching in a speculative
and efficient manner at runtime.
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B. Modeling Element Propagation

We take RandomX-series mining algorithms (which are
used by major cryptocurrencies and have derived many vari-
ants) as an example to illustrate the element propagation mod-
eling. It should be noted that such modeling is generalizable
to other algorithms (cf. §IV). The execution of RandomX
involves a huge number of vector operations in different
stages. It first generates instructions in its own ISA format
based on transaction information, and then translates them
to the instructions on specific platforms (i.e., the general-
purpose CPUs). The operations of RandomX instructions can
be directly mapped to either scalar or SIMD instructions
on regular CPU platforms, since they are all register-based.
However, when they are executed in WASM, we need to
translate them into WASM stack operations that have no
special registers for state maintenance.

Decomposing element propagation. We introduce a new ab-
straction called Element Propagation Graph (EPG) to track the
propagation of vector elements during the WASM execution
of mining programs (which is mostly in SISD forms). EPGs
facilitate the search for isomorphic propagation paths and vec-
torize them into WASM SIMD instructions. To validate a new
transaction, Vectra iterates through the RandomX instructions
(the dynamic program) for graph construction.

To achieve this, Vectra first decomposes each RandomX
instruction into basic operations in the WASM ISA. The
WASM VM only supports the round-to-nearest ties-to-even
mode for floating point rounding [47], while the RandomX
ISA (and CPU platforms) additionally supports round-to-
negative, round-to-positive, and round-to-zero modes, which
are controlled by the fprc register [10]. For the other three
modes not supported by WASM, we translate their correspond-
ing instructions by simulating floating point calculation. We
use the 64-bit integer type in WASM to store the mantissas,
and use the 32-bit integer type to store the exponents and sign
bits. We follow the IEEE 754 standard [48] to manipulate the
three integers. We also decompose the calculation on 128-bit
integers in RandomX into the high-64 bits and low-64 bits
operations in WASM. The other scalar instructions do not
require decomposition since they have no operations that are
not supported by the WASM ISA.
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Constructing EPGs. We next transform a dynamic mining
program into an EPG. An EPG is a directed acyclic graph
where each node represents a vector element together with the
arithmetic operation that produces it, and each edge represents
the propagation of data from one element to another element
accompanied by the operation.

For each RandomX instruction, Vectra constructs corre-
sponding graph nodes and edges based on the instruction
decomposition. As exemplified in Figure 1a, suppose we have
three RandomX instructions. We first decompose them into the
form that is compatible with WASM (Figure 1b). Figure lc
shows the resulting EPG for the exponents of floating points in
the example of Figure 1b. We also model element propagation
of scalar instructions into EPGs, as a single scalar instruction
can still be vectorized with other adjacent instructions. In
addition, for immediate values in an instruction, we transform
them into a new graph node without the preceding operator.

The construction of the EPG is only a static analysis over
the dynamic program, and we cannot determine which address
a branch instruction actually jumps to if the jump condition is
satisfied. Thus, during the EPG construction, Vectra assumes
that branch instructions are all not satisfied and the program
counter does not jump but simply increases by one. This is
reasonable as the probability of a single RandomX branch
instruction’s condition to be satisfied is only 0.39% according
to RandomX specifications [10]. As shown in Figure 6, the
probability of no satisfied branch instruction in a dynamic
mining program is 90.7% for RandomX and RandomARQ,
and 93.9% for Panthera. Also, the probability of one satisfied
branch instruction in a dynamic program is merely 8.9% for
RandomX and RandomARQ, and 5.9% for Panthera. For the
probability of more than two branch instructions satisfied in a
dynamic program, it becomes negligible (<0.01%). Of course,
such an assumption will lead to incorrect results when the
branch condition is actually met during the program execution.
We will show our approach based on the concept of symbolic
constraints to addressing this issue in §I1I-D

C. Efficient Program Transformation

Having obtained the EPG for a dynamic program of a new
transaction, Vectra searches for isomorphic propagation paths
in the graph to rearrange vectorizable data elements and merge
them into WASM SIMD instructions. Vectra determines two
element propagation paths are isomorphic if their correspond-
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Fig. 7: Examples of graph isomorphism, where “I” represents
the 64-bit integer type and “S” represents the 32-bit integer
type. Graph components a, b, and ¢ are all isomorphic, while
d and e are partially isomorphic with a, b, and c.

ing graph components are non-overlapped with the same data
type, operator sequence, and topological structure.

As exemplified in Figure 7, graph components a, b, and ¢
are all isomorphic. For propagation b, the operands /2 and /3
are swapped compared with a. However, we still regard a and
b as isomorphic as their topological structures are the same
(i.e., two data elements first propagate to a new element over
the “—"" operation, and this new element then propagates with
another element over the “+” operation). Besides, although the
operands I0 and I1 in propagation c¢ are swapped compared
with a, we still regard @ and ¢ as isomorphic since their
topological structures are the same. In practice, we can load
counterpart elements from these isomorphic components with
a proper order to achieve SIMD execution, e.g., we can load
10 of a and I1 of c into one vector, and I1 of a and I0 of ¢
into another vector for a vectorized “—” operation.

For components d and e, they are not isomorphic with a, b,
or c. The “—” operator in d operates on two 32-bit integers,
which differ from the 64-bit integers in a, b, and c. Such a
difference makes the “—” operation unable to be vectorized
with SIMD instructions in WASM, as all SIMD instructions
only support data elements with the same data type. For the
element propagation in e, its operator sequence (i.e., the two
“—” operators) is different from that in a, b, and ¢, which
cannot be vectorized in WASM, either. Thus, propagation e
is also not isomorphic with the other three components. It
is worth noting that d and e are partially isomorphic with
a, b, and ¢, as they have common sub-components (i.e.,
nodes in green). Besides, we determine memory operations are
isomorphic only when they have consecutive memory accesses
based on the WASM ISA features [49].

”

Searching for isomorphic components. To pinpoint all iso-
morphic components in an EPG, a direct method is to compare
each pair of graph nodes with the same operator and the same
data type, and then backtrack their parent nodes. Unfortu-
nately, this method enumerates all combinations, incurring a
time complexity of O(n!) where n is the number of graph
nodes. To address this, Vectra adopts a branch-and-bound
strategy when searching for isomorphic components, which
only considers the nodes that are close to each other. This is
based on our key observation that a dynamic mining program
mainly involves the following two types of isomorphism that
present a strong locality in data dependencies:



Intra-instruction isomorphism. After the decomposition
of vector instructions, the calculation on each data element
of the same data type is emulated separately, but their
applied WASM operation sequences are all the same since
the emulation on the same data type is the same.

Inter-instruction isomorphism. Two instructions that are
close to each other have a higher probability to have isomor-
phic data dependencies for vectorizations, since they have
simpler data dependencies than those of the instructions that
are far from each other.

As a result, in order to measure the locality of data depen-
dencies for graph nodes, we define a locality density metric
between two graph nodes = and y as

L (x7 y) = Lint'ra (x» y) . Lintc7‘ ($7 y) ) (1)

where  Lipntrq (2,9) |D (z,7) — D (y,7)| + 1, and
Linter (z,y) = I (x,y)+ 1. Specifically, D (x,r) and D (y,7)
are the depth of x and y to their common ancestor 7 in the
graph. If they have no common ancestor 7, we set D (z,7) = 0
and D (y,r) = 0. During the emulation of a vector instruction
in WASM, each data element forms its own data dependency
in different steps of the emulation, and thus the graph nodes
from different data elements at the same emulation step (i.e.,
at the same depth to the common ancestor ) have a higher
probability to be vectorized. I (z,y) is the number of inter-
mediate instructions between the instructions that produce the
graph nodes x and y. This corresponds to the inter-instruction
isomorphism where two graph nodes close to each other with
a smaller I (z,y) have a higher probability to be vectorized.

The locality metric in Equation 1 represents the probability
of two graph nodes to be vectorizable. A smaller L indicates
that two nodes are more likely to have isomorphic prece-
dent element propagation. With this metric, Vectra clusters
graph nodes into different subgraphs with the DBSCAN al-
gorithm [50] to bound the searching space, by only searching
isomorphic propagation within a cluster. Specifically, Vectra
first compares each leaf node in the cluster. If they have the
same operator on the same data type, Vectra backtracks to their
parent nodes respectively. Once they have no parent nodes or
their parent nodes are different in either the operator or the
data type, Vectra stops the searching process and records the
current isomorphic propagation.

Element merging and instruction emission. After pinpoint-
ing all isomorphic element propagation paths based on the
clustered graph nodes, Vectra rearranges the data elements for
each isomorphic graph component onto the WASM processing
stack to enable their SIMD execution. Vectra emits WASM
instructions based on the topological order of graph nodes
(i.e., the instructions that have no precedent data dependen-
cies). We map the basic arithmetic operation (e.g., +, —,
and so forth) of graph edges to WASM instructions like
i64.add and i64. sub. For vectorizable isomorphic graph
components, Vectra loads them together with their counterpart
elements onto the WASM processing stack using WASM
SIMD load instructions like v128.1load. It then applies the
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Fig. 8: Incorrect executions of WASM vector instructions
caused by branches. The green box is the correct execution.

SIMD arithmetic operations on them such as 1 64x2 . add and
164x2.sub. When all graph nodes are processed based on
the topological order, we finally get the WASM instructions
that are largely vectorized for validating the transaction block.

Complexity analysis. Graph isomorphism calculation and
instruction emission are all performed ahead of the execution
of a dynamic program. It is important to keep them with a
low time consumption to reduce the startup delay for WASM
translation during the continuous mining process. Since the
construction of the element propagation graph only goes
through all instructions once, it incurs a time complexity of
O(k), where k is the number of instructions in the original
program. During the construction, we can record the depth
of each node to each of its parent nodes. The calculation of
graph isomorphism based on the locality metric in Equation 1
therefore only incurs a time complexity of O(n?), where
n is the number of graph nodes. Besides, the topological
instruction emission process incurs a time complexity of O(n).
Thus, the time complexity of the whole transformation process
is O(k + n? + n). In practice, the number of generated
graph nodes for a RandomX instruction is no more than a
constant value c. The overall time complexity is then under
O(k + ¢ - k? + ck) = O(Kk?). We show in §V that such a
complexity is satisfactory for web cryptomining.

D. Runtime Symbolic Correction

When handling conditional branch instructions, the afore-
mentioned EPG can induce incorrect results. This is because
Vectra assumes that the conditions are always not satisfied,
so as to reduce the complexity during the graph construction.
However, the actual execution may perform the jump operation
when the condition is met. As exemplified in Figure 8, if
we consider that the CBRANCH instruction is not satisfied
(which holds true in most cases as we mentioned in §III-B),
the first two ISUB_R instructions can be vectorized into a
single WASM SIMD instruction (i.e., 164x2 . sub on vectors
v0 and v2). However, when the CBRANCH instruction is
satisfied in between, the translated WASM instructions become
incorrect. In the example of Figure 8, we cannot simply jump
to the first 1 64x2 . sub instruction since in this case the data
elements in vO and v2 are not consistent with those in the
original mining program. In fact, the branch instructions will
jump to the last instruction that modifies the target register as
detailed in RandomX specifications [28], i.e., R2 in Figure 8.
Thus, the correct execution should jump to a scalar instruction



that performs subtractions on R2 and R3 (i.e., 164 .sub in
the example correct executions).

Meanwhile, when the propagation of data elements is across
a branch instruction in the original mining program (i.e., the
two ISUB_R instructions right before and after the CBRANCH
instruction in Figure 8), we cannot directly execute the vec-
torized instructions of such interrupted propagation when the
branch condition is satisfied. This is because in the example,
only the instructions before the satisfied branch instruction
are executed, while the instructions after the branch are not.
Instead, we should execute the original instructions before the
branch instruction, and then perform actual jump operations
in WASM (i.e., the 164 .sub and br instructions at the end
of the green box in Figure 8).

Symbolic constraints. To address the issue, a direct solu-
tion is to record the dynamic program execution at runtime,
which incurs a high overhead. We thus introduce symbolic
constraints, which capture (and simplify) the conditions where
a branch instruction is satisfied, so that we can ensure correct
branching in a speculative manner. Concretely, after generating
the dynamic program, Vectra calculates the range of a tested
register value that will cause the program counter to jump to a
specific instruction. Such a range (i.e., the symbolic constraint)
limits the register values of different execution paths.

Specifically, according to the RandomX specifications [10],
a branch condition is satisfied and the program counter jumps
when the following equation derived from the corresponding
branch instruction is equal to zero

(Ry + IMM& (~ (1< (S—1))) & (0xFF < S), (2)

where R, is the destination register accumulated with the
immediate value MM, and S is the shift value. They are
all encoded in a branch instruction of the RandomX-series
algorithms. Based on Equation 2, we can derive the concise
symbolic constraints on the value of the register Rx that
satisfies the branch condition. For example, if S = 2 and
IM M = 3, the symbolic constraint of the value in register Rx
that satisfies the branch condition is (Rz + 1) &0x3FC = 0.
At the offline phase, we calculate all the symbolic constraints
for the RandomX branch instructions.

With these constraints, Vectra builds a jump table, where
each table entry records the target instruction address and
the recovery instructions (as exemplified in the green box of
Figure 8). At runtime, only before executing the vectorized
instruction that is across a branch instruction, Vectra tests
whether the relevant symbolic constraints are satisfied based
on the (emulated) register value. If so, Vectra switches to the
corresponding scalar instructions in the jump table instead of
continuing the SIMD execution to recover correctness. We will
show in §V-B that compared with the real-time monitoring
approach, we speed up the branch recovery process by 4.5x.

IV. IMPLEMENTATION

We implement Vectra on top of RandomX with 800 lines
of JavaScript code and 5K lines of C/C++ code. We modify
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the byte code machine module in the RandomX reference
implementation [10] to translate its instructions into WASM
instructions. To compile the resulting translations into WASM
byte code, we use Emscripten emcc v3.1 [41] as the backend
compiler. We disable the RANDOMX_FLAG_FULL_MEM ﬂag
in RandomX to limit the memory usage to a low level
(<512 MB), so that Vectra can work well on low-end de-
vices. Also, for mobile devices, we dynamically adjust the
computation intensity (e.g., the number of active threads)
based on the device’s in-situ overhead to avoid potential
side effects on user experience. Besides, we fine-tune the
neighborhood parameter and the minimum number of points
for the EPG node clustering process through an offline test
over their parameter grids, seeking for a balance between the
number of generated SIMD instructions (speedup) and the
time cost of program transformation (overhead). Once Vectra
receives a mining job from the mining pool over the Stratum
protocol [51], it initializes the memory in WASM for the
translations and executions of the RandomX instructions.

Deployment strategies. Vectra can be directly integrated
into the official websites of mainstream cryptocurrencies. Web
users can register an account on the official website and
start mining without any further actions. Third-party websites
can also provide mining services in a similar way, or even
serverless mining microservices by means of stateless/stateful
cloud functions. As Vectra runs as long as a web page is
opened, users are able to easily mine on either their PCs
or mobile phones. Moreover, web users can simply install a
browser plugin of Vectra without any configurations on the
host OS. They only need to login to their cryptocurrency
accounts and then the plugin can automatically start mining
in background when they are surfing on the web. In this
way of allowing users to mine on their devices with minimal
efforts, Vectra can significantly enhance the democracy of the
cryptocurrency ecosystem. We also explore the deployment of
Vectra on the emerging serverless platforms (detailed in https:
//WebCryptomining.github.io), which involves a distributed
metalog synchronization mechanism for stateful functions to
achieve strong consistency and high reliability.

Generalizability. Currently, at least 26 cryptocurrencies
such as Monero and Zephyr have enforced RandomX-series
algorithms [52], indicating that RandomX is becoming the de-
facto standard to combat mining farms. Thus, for a long time
in the future, Vectra can be directly applied to relevant variants.
Nevertheless, the design principle of Vectra is not specific
to RandomX as its general idea is to leverage isomorphic
patterns during program transformation across different ISAs.
As a result, for cryptocurrencies that need to enforce other
algorithms in the far future, Vectra can still be adapted with
affordable efforts. We only need to determine the mapping
between algorithm-specific operations and WASM instruc-
tions, which is a one-shot effort. In essence, Vectra can be
reused by different mining algorithms for efficient instruction
transformations to adapt to the web environments.
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Fig. 9: Comparing the hash rates of
Vectra with the others.

V. EVALUATION
A. Experiment Setup

We compare the performance of Vectra with the compiler-
optimized RandomX over traditional vectorization schemes
like SLP (denoted as RandomX-Compiler) [29], [30], as
well as the default RandomX implementations on WASM
and JavaScript (denoted as RandomX-WASM and RandomX-
JS). The basic settings of our testbed are similar to those
introduced in §II. We connect the three implementations to
the MoneroOcean [53] mining pool for running the same set
of real-world mining tasks. We use both PCs and mobile
phones as listed in Table I for the evaluation, which cover
the mainstream CPU architectures (i.e., x86 and ARM CPUs
from four vendors including Intel, Apple, Qualcomm, and
HiSilicon). Note that we can mine cryptocurrencies on mobile
phones even if the cryptocurrency does not natively support
it, as mobile devices can visit mining pages through browsers.

B. Effectiveness on Cryptomining

Overall efficiency. Figure 9 shows the hash rate of the
compared approaches. RandomX-WASM bears a quite low
efficiency, which has only a hash rate of 12.4 H/s even on
the high-end PC-1 (with 8 cores at 2.90 GHz and a maximum
turbo frequency of 5.30 GHz [54]). RandomX-JS is even
worse, with a hash rate of only 8.3 H/s on PC-1. For mobile
phones, the hash rates of the default RandomX-WASM and
RandomX-JS are all below 5 H/s. Such performance is similar
to the results for the Panthera algorithm of Scala (cf. §II).
Although RandomX-Compiler can improve the hash rate to
some extent, its speed is still very low and not practical for web
cryptomining. For example, on PC-1, RandomX-Compiler
achieves a hash rate of 26.42 H/s, which is only 2x faster
than RandomX-WASM. In some cases, we also observe that
RandomX-Compiler is even slower than RandomX-WASM.
This is easy to understand because the complex conditional
jumps of the RandomX instruction set make RandomX-
Compiler unable to optimize the mining program proactively.
In contrast, Vectra significantly improves the hash rate. As
shown, Vectra achieves a hash rate of 124.53 H/s, 104.42
H/s, and 60.12 H/s on x86-based PC-1, PC-2, and PC-3
respectively, which are 10x faster than that of RandomX-
WASM. For ARM-based PC-4, Vectra achieves a hash rate
of 115.50 H/s, which is also at least 10x faster. For mobile

# Translated Instructions

Fig. 10: Comparing the number of trans-
lated instructions.
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devices, Vectra achieves a hash rate of 42.42 H/s and 36.32
H/s for MP-1 and MP-2, respectively, which are 8x faster.
Such a high efficiency makes web cryptomining practical and
profitable in the real world (cf. §V-D).

Instruction reduction. To understand Vectra’s improvements
in web mining performance, we analyze the resulting WASM
instruction patterns. Figure 10 shows the number of translated
instructions of WASM-based approaches. RandomX-WASM
translates an average transaction into nearly 15K instructions
(i.e., 58.5 WASM instructions for an average RandomX in-
struction), while RandomX-Compiler translates an average
transaction into 11K instructions (i.e., 44.2 WASM instructions
for an average RandomX instruction). In contrast, Vectra
significantly reduces the number of translated instructions by
merging isomorphic element propagation paths to transform
a mining program in-situ, which only translates an average
transaction into 2.3K WASM instructions (i.e., 8.9 WASM
instructions for an average RandomX instruction). Compared
to RandomX-WASM, Vectra reduces the number of translated
instructions by ~7x. The actual performance improvements
(~10x for PCs and ~8x for mobile phones) of Vectra are
slightly higher than the reduced number of translated instruc-
tions (~7x). This is because after merging the instructions,
the number of time-consuming memory operations is further
reduced as many elements are operated on together in a single
vectorized memory operation.

C. Performance Breakdown

We perform an ablation study to demonstrate the effec-
tiveness of the components and design choices in Vectra, by
disabling or replacing each component separately in program
transformation. When instruction decomposition is removed,



we directly translate RandomX instructions into approximate
WASM instructions. For example, we simply use 64-bit in-
tegers to achieve 64-bit integer multiplication (which is the
most suited type supported by WASM but could still result in
overflow). Similarly, we directly use the native 64-bit floating-
point numbers of WASM for floating-point operations, without
considering the precision problem introduced by directed
rounding. When locality-aware isomorphism searching is dis-
abled, we search for isomorphic propagation paths over the
whole EPG. When instruction merging is disabled, we do not
merge the discovered isomorphic element propagation paths.
We also disable the rearrangement for scalar elements, which
accounts for a small portion of computation (cf. §II). Besides,
when runtime symbolic correction is disabled, we do not add
correction byte code and do not correct the data arrangements
at runtime. Further, we replace the runtime symbolic correction
with a direct monitoring mechanism that examines all the
previously executed instructions for comparison.

Effectiveness of program transformation. As shown in
Figure 12, when we disable any of the components related to
program transformation including instruction decomposition,
locality-aware isomorphism searching, as well as instruction
merging, the performance of Vectra on PC-1 degrades signif-
icantly. Specifically, when instruction decomposition is dis-
abled, the accuracy of Vectra drops to 6%, which makes web
cryptomining impractical. This is because the approximate
translation of RandomX instructions into WASM introduces
precision loss, particularly for floating-point operations. When
we disable locality-aware isomorphism searching, the accuracy
does not drop but the hash rate drops significantly by >99%.
This is because searching for isomorphic element propagation
paths over the entire EPG bears prohibitively high overhead.

Note that we use the locality metric (and the corresponding
branch-and-bound search strategy) to reasonably balance be-
tween speedup and complexity, and thus can indeed miss some
opportunities for cross-cluster isomorphism and performance
gain. For small-scale EPGs that can be exhaustively examined
in acceptable time, the loss lies between 5%—12%.

In addition, disabling element migration and instruction
merging leads to a 91% (i.e., ~11x) drop in the hash
rate. Such a performance lines up with the performance of
RandomX-WASM on PCs, which is ~10x slower.

Optimizations on scalars. The ablation study also demon-
strates the effectiveness on rearranging scalar elements to-
gether with vector elements. When we disable the rearrange-
ment for scalar elements, the performance of Vectra drops
by 15%, and the number of resulting WASM instructions
increases by 32%. This indicates that except for vector
operations that dominate the computation in web mining,
merging similar scalar propagation also has the potential to
improve efficiency of web mining, despite the less significant
improvements compared to merging vector elements.

Benefits of symbolic correction. As shown in Figure 12,
when we disable symbolic corrections, the hash rate improves
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slightly by 4%. However, the accuracy drops by 29%. These
incorrect results arise when the branch conditions are satisfied
and the data need rearrangements. Compared with the minor
degradation in hash rate, the symbolic correction achieves
accurate mining results, which is crucial to obtain profits in
the real world. We also compare the symbolic correction with
a direct monitoring mechanism that examines all instructions.
Such a direct checking results in a 78% hash rate drop and a
123% increase in the number of translated instructions, which
is 4.5x less efficient than Vectra.

Traffic overhead. Vectra incurs additional traffic on users’
devices, which mainly comes from the compiled WASM
binaries for transforming RandomX instructions. Nevertheless,
the incurred traffic is negligible compared to the overall traffic
of a web page which is usually a couple of MBs. According
to our measurements, the total additional traffic of Vectra is
only 34 KB after the gzip compression on average.

Performance on mobile devices. We evaluate Vectra on
mobile devices that have significant resource constraints. As
shown in Figure 11, at the beginning the power consumption
of Vectra slightly increases when the device temperature goes
up. Then, it remains stable at around 1.3 W, while the memory
consumption remains stable at 310 MB, which will not affect
the usage of mobile devices. Although RandomX-WASM has
very similar resource consumption, its hash rate is much lower.

D. Economic Analysis

We model the economic profits of users who use Vectra
to conduct web cryptomining. The cost of deploying Vectra
and conducting web cryptomining comes from the required
electricity and network traffic. Thus, suppose that the electric-
ity price of the user is E per kilowatt-hour (kWh) and the
Internet service price is N per month. Then, the cost of web
cryptomining for a month is

Cost = Pt/E + N, (3)

where P is the power of the CPU used by the user, and ¢ is
the total seconds in a month (i.e., 2.592 x 10° seconds). The
revenue of web cryptomining comes from mining rewards. It
can be represented as

Revenue = RHt/D, 4

where H is the total hash rate of Vectra over the web, D is the
difficulty of mining the cryptocurrency, and R is the exchange



rate of USD against Monero. Thus, the return-on-investment
(ROI) of web cryptomining for a month is

Revenue — Cost H/D )
Cost P/E+ N/t

The electricity price in the USA is 0.16 USD/kWh on
average, and the price of Internet service is 2.75 USD/GB [55],
[56]. The average CPU power can be regarded as 30 W for
mobile phones and PCs [57]. We can then calculate the ROI of
web cryptomining based on the average hash rate. Figure 13a
shows the ROI with Vectra regarding mining difficulties and
exchange rates. A user can easily obtain a positive (and
satisfying) ROI. For example, the ROI on Aug. 1st, 2024 is
120%, when the difficulty of Monero is 281.73 GH [58] and
the exchange rate is 156.1324 USD/XMR [59]. However in
Figure 13b, users using RandomX-WASM can hardly achieve
a satisfying ROI and in most cases their ROI is negative.

It should be noted that the real-world ROI might be affected
by more factors. Browser idle time and intermittent mining be-
haviors can both reduce the hash rate and ROI. Quantitatively,
if the idle rates are 10% and 20%, the ROI would drop to
98% and 76% respectively, which however are still positive.
On the other side, most countries (e.g., USA, UK, and China)
enforce time-of-use pricing, where the electricity price is much
lower (or even free) during non-peak hours. Also, browser
caching can help save the network traffic for cryptomining.
These factors improve the ROI in practice.

ROI = =R x

VI. RELATED WORK

Cryptomining and its algorithms. Over the past decade,
there has been a surge of various mining algorithms [60]-
[63] for different cryptocurrencies. For example, Bitcoin [1]
uses the SHA-256 function, while Monero used to adopt the
CryptoNight algorithm [64]. They can be efficiently executed
on dedicated hardware like ASICs and FPGAs used by large
mining farms, and thus pose threats to the democracy of the
cryptocurrency ecosystem. In contrast, the recently proposed
RandomX algorithm [10] is designed to resist the dedicated
hardware, and has been widely adopted by cryptocurrencies
like Monero. In this work, we propose a new approach for
efficient and profitable web cryptomining based on the Ran-
domX framework, which exploits the intrinsic isomorphism
among element propagations of vectors in RandomX-series
algorithms to accelerate web-based mining.

Cryptojacking and its detection. As an important security
topic, there have been a number of methods and tools [18],
[19], [65] to detect and defend against cryptojacking (which hi-
jacks user devices for illegal cryptomining and monetization).
For example, MineSweeper [65] identifies web cryptojacking
attacks based on the intrinsic properties of the mining algo-
rithm such as specific cryptographic operations and memory
access patterns. MineThrottle [18] is another tool that detects
web cryptojacking by instrumenting WASM code on the fly
and throttles drive-by mining behaviors based on a user-
configurable policy. In essence, democratizing legitimate web
mining can open doors for potential abuses of the capability of
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Vectra in cryptojacking. However, we argue that the defense
should focus on addressing malicious websites, instead of
taking away democracy itself.

Instruction translation and translation. Instruction trans-
lation is a common technique used in system-level emula-
tion [66]—[69]. Prior studies have proposed various techniques
to achieve efficient instruction translation between different
ISAs. QEMU [70] is a fast and portable dynamic binary
translation system featured by block translation and caching.
In recent years, learning-based approaches are used to gen-
erate the principled rules for system-level dynamic binary
translation [71]. During code translation and compilation,
a number of optimization techniques can be used, such as
outer-loop vectorization and register reorganization [72]-[74].
Differently, Vectra leverages the isomorphism among element
propagation paths of vectors in the mining algorithms to
accelerate the web mining process. Such isomorphism is rarely
used in prior work to optimize the translated binaries.

VII. CONCLUSION

As a keystone of the cryptocurrency ecosystem, democracy
has been severely threatened by the monopolization of mining
farms in recent years. Existing countermeasures by enforcing
new mining algorithms can effectively address this, but on the
other hand have rendered web cryptomining unprofitable and
constantly fading. In this paper, we propose the methodology
of just-in-time transformation of mining programs and imple-
ment Vectra to make web cryptomining efficient, in the hope
of reviving the democracy. This is achieved by discovering
and exploiting the pervasive isomorphic propagation paths
of vector elements in the mining programs. Our evaluation
with real-world mining tasks and devices validates the ef-
fectiveness of Vectra. In a broader sense, our study provides
a new perspective on the translations of vector instructions
across different ISAs, which can be applied to building high-
performance system-level emulators and binary translators.
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